Skip to main content

API & Clients

This guide highlights the core workflow.

tip

See full API reference here.

App setup​

Install API client package

pip install llama-cloud 

Import and configure client

from llama_cloud.client import LlamaCloud

client = LlamaCloud(token='<llama-cloud-api-key>')

Create new index​

Upload files​

with open('test.pdf', 'rb') as f:
file = client.files.upload_file(upload_file=f)
tip

See Files API for full details on file management.

Configure data sources​

from llama_cloud.types import CloudS3DataSource

ds = {
'name': 's3',
'source_type': 'S3',
'component': CloudS3DataSource(bucket='test-bucket')
}
data_source = client.data_sources.create_data_source(request=ds)
tip

See Data Sources API for full details on data source management.

See full list of data sources and specifications.

Configure data sinks​

from llama_cloud.types import CloudPineconeVectorStore

ds = {
'name': 'pinecone',
'sink_type': 'PINECONE',
'component': CloudPineconeVectorStore(api_key='test-key', index_name='test-index')
}
data_sink = client.data_sinks.create_data_sink(request=ds)

tip

See Data Sinks API for full details on data sink management.

See full list of data sinks and specifications.

Setup transformation and embedding config​

tip

See Parsing & Transformation for full details on transformation guide.

# Embedding config
embedding_config = {
'type': 'OPENAI_EMBEDDING',
'component': {
'api_key': '<YOUR_API_KEY_HERE>', # editable
'model_name': 'text-embedding-ada-002' # editable
}
}

# Transformation auto config
transform_config = {
'mode': 'auto',
'config': {
'chunk_size': 1024, # editable
'chunk_overlap': 20 # editable
}
}

Create index (i.e. pipeline)​

pipeline = {
'name': 'test-pipeline',
'embedding_config': embedding_config,
'transform_config': transform_config,
'data_sink_id': data_sink.id
}

pipeline = client.pipelines.upsert_pipeline(request=pipeline)

tip

See Pipeline API for full details on index (i.e. pipeline) management.

Add files to index​

files = [
{'file_id': file.id}
]

pipeline_files = client.pipelines.add_files_to_pipeline(pipeline.id, request=files)

Add data sources to index​

data_sources = [
{
'data_source_id': data_source.id,
'sync_interval': 43200.0 # Optional, scheduled sync frequency in seconds. In this case, every 12 hours.
}
]

pipeline_data_sources = client.pipelines.add_data_sources_to_pipeline(pipeline.id, request=data_sources)

tip

For more details on scheduled sync, including how the sync timing works, and available sync frequencies, refer to Scheduled sync.

Add documents to index​

from llama_cloud.types import CloudDocumentCreate

documents = [
CloudDocumentCreate(
text='test-text',
metadata={
'test-key': 'test-val'
}
)
]

documents = client.pipelines.create_batch_pipeline_documents(pipeline.id, request=documents)

Observe ingestion status & history​

Get index status​

status = client.pipelines.get_pipeline_status(pipeline.id)

Get ingestion job history​

jobs = client.pipelines.list_pipeline_jobs(pipeline.id)

Run search (i.e. retrieval endpoint)​

results = client.pipelines.run_search(pipeline.id, query='test-query')