Upsert Embedding Model Config
PUThttps://api.cloud.llamaindex.ai/api/v1/embedding-model-configs
Upserts an embedding model config. Updates if an embedding model config with the same name and project_id already exists. Otherwise, creates a new embedding model config.
Request
Query Parameters
project_id any
organization_id any
Cookie Parameters
session any
- application/json
Bodyrequired
name object
embedding_config object
Responses
- 200
- 422
Successful Response
- application/json
- Schema
- Example (auto)
Schema
iduuidrequired
Unique identifier
created_at object
updated_at object
nameName (string)required
The name of the embedding model config.
embedding_config objectrequired
project_iduuidrequired
{
"id": "3fa85f64-5717-4562-b3fc-2c963f66afa6",
"created_at": "2024-07-29T15:51:28.071Z",
"updated_at": "2024-07-29T15:51:28.071Z",
"name": "string",
"embedding_config": {
"type": "AZURE_EMBEDDING",
"component": {
"model_name": "text-embedding-ada-002",
"embed_batch_size": 10,
"num_workers": 0,
"additional_kwargs": {},
"api_key": "string",
"api_base": "string",
"api_version": "string",
"max_retries": 10,
"timeout": 60,
"default_headers": {},
"reuse_client": true,
"dimensions": 0,
"azure_endpoint": "string",
"azure_deployment": "string",
"class_name": "AzureOpenAIEmbedding"
}
},
"project_id": "3fa85f64-5717-4562-b3fc-2c963f66afa6"
}
Validation Error
- application/json
- Schema
- Example (auto)
Schema
detail object[]
{
"detail": [
{
"loc": [
"string",
0
],
"msg": "string",
"type": "string"
}
]
}
- csharp
- curl
- dart
- go
- http
- java
- javascript
- kotlin
- c
- nodejs
- objective-c
- ocaml
- php
- powershell
- python
- r
- ruby
- rust
- shell
- swift
- HTTPCLIENT
- RESTSHARP
var client = new HttpClient();
var request = new HttpRequestMessage(HttpMethod.Put, "https://api.cloud.llamaindex.ai/api/v1/embedding-model-configs");
request.Headers.Add("Accept", "application/json");
request.Headers.Add("Authorization", "Bearer <token>");
request.Headers.Add("Authorization", "Bearer <token>");
var content = new StringContent("{\n \"name\": \"string\",\n \"embedding_config\": {\n \"type\": \"AZURE_EMBEDDING\",\n \"component\": {\n \"model_name\": \"text-embedding-ada-002\",\n \"embed_batch_size\": 10,\n \"num_workers\": 0,\n \"additional_kwargs\": {},\n \"api_key\": \"string\",\n \"api_base\": \"string\",\n \"api_version\": \"string\",\n \"max_retries\": 10,\n \"timeout\": 60,\n \"default_headers\": {},\n \"reuse_client\": true,\n \"dimensions\": 0,\n \"azure_endpoint\": \"string\",\n \"azure_deployment\": \"string\",\n \"class_name\": \"AzureOpenAIEmbedding\"\n }\n }\n}", null, "application/json");
request.Content = content;
var response = await client.SendAsync(request);
response.EnsureSuccessStatusCode();
Console.WriteLine(await response.Content.ReadAsStringAsync());
ResponseClear