Skip to main content

Update Embedding Model Config

PUT 

https://api.cloud.llamaindex.ai/api/v1/embedding-model-configs/:embedding_model_config_id

Update an embedding model config by ID.

Request

Path Parameters

    embedding_model_config_id uuidrequired

Cookie Parameters

    session any

Bodyrequired

    name object

    The name of the embedding model config.

    anyOf
    string
    embedding_config object

    The embedding configuration for the embedding model config.

    anyOf
    type

    Possible values: [AZURE_EMBEDDING, BEDROCK_EMBEDDING, COHERE_EMBEDDING, GEMINI_EMBEDDING, HUGGINGFACE_API_EMBEDDING, OPENAI_EMBEDDING, VERTEXAI_EMBEDDING]

    component object

    Configuration for the Azure OpenAI embedding model.

    model_nameModel Name (string)

    The name of the OpenAI embedding model.

    Default value: text-embedding-ada-002
    embed_batch_sizeEmbed Batch Size (integer)

    The batch size for embedding calls.

    Possible values: > 0 and <= 2048

    Default value: 10
    num_workers object

    The number of workers to use for async embedding calls.

    anyOf
    integer
    additional_kwargsobject

    Additional kwargs for the OpenAI API.

    api_key object

    The OpenAI API key.

    anyOf
    string
    api_baseApi Base (string)

    The base URL for Azure deployment.

    Default value:
    api_versionApi Version (string)

    The version for Azure OpenAI API.

    Default value:
    max_retriesMax Retries (integer)

    Maximum number of retries.

    Default value: 10
    timeoutTimeout (number)

    Timeout for each request.

    Default value: 60
    default_headers object

    The default headers for API requests.

    anyOf
    object
    reuse_clientReuse Client (boolean)

    Reuse the OpenAI client between requests. When doing anything with large volumes of async API calls, setting this to false can improve stability.

    Default value: true
    dimensions object

    The number of dimensions on the output embedding vectors. Works only with v3 embedding models.

    anyOf
    integer
    azure_endpoint object

    The Azure endpoint to use.

    anyOf
    string
    azure_deployment object

    The Azure deployment to use.

    anyOf
    string
    class_nameClass Name (string)
    Default value: AzureOpenAIEmbedding

Responses

Successful Response

Schema
    iduuidrequired

    Unique identifier

    created_at object

    Creation datetime

    anyOf
    string
    updated_at object

    Update datetime

    anyOf
    string
    nameName (string)required

    The name of the embedding model config.

    embedding_config objectrequired

    The embedding configuration for the embedding model config.

    type

    The embedding configuration for the embedding model config.

    Possible values: [AZURE_EMBEDDING, BEDROCK_EMBEDDING, COHERE_EMBEDDING, GEMINI_EMBEDDING, HUGGINGFACE_API_EMBEDDING, OPENAI_EMBEDDING, VERTEXAI_EMBEDDING]

    component object

    Configuration for the Azure OpenAI embedding model.

    model_nameModel Name (string)

    The name of the OpenAI embedding model.

    Default value: text-embedding-ada-002
    embed_batch_sizeEmbed Batch Size (integer)

    The batch size for embedding calls.

    Possible values: > 0 and <= 2048

    Default value: 10
    num_workers object

    The number of workers to use for async embedding calls.

    anyOf
    integer
    additional_kwargsobject

    Additional kwargs for the OpenAI API.

    api_key object

    The OpenAI API key.

    anyOf
    string
    api_baseApi Base (string)

    The base URL for Azure deployment.

    Default value:
    api_versionApi Version (string)

    The version for Azure OpenAI API.

    Default value:
    max_retriesMax Retries (integer)

    Maximum number of retries.

    Default value: 10
    timeoutTimeout (number)

    Timeout for each request.

    Default value: 60
    default_headers object

    The default headers for API requests.

    anyOf
    object
    reuse_clientReuse Client (boolean)

    Reuse the OpenAI client between requests. When doing anything with large volumes of async API calls, setting this to false can improve stability.

    Default value: true
    dimensions object

    The number of dimensions on the output embedding vectors. Works only with v3 embedding models.

    anyOf
    integer
    azure_endpoint object

    The Azure endpoint to use.

    anyOf
    string
    azure_deployment object

    The Azure deployment to use.

    anyOf
    string
    class_nameClass Name (string)
    Default value: AzureOpenAIEmbedding
    project_iduuidrequired

Authorization: http

name: HTTPBearertype: httpscheme: bearer
name: HTTPBearertype: httpscheme: bearer
var client = new HttpClient();
var request = new HttpRequestMessage(HttpMethod.Put, "https://api.cloud.llamaindex.ai/api/v1/embedding-model-configs/:embedding_model_config_id");
request.Headers.Add("Accept", "application/json");
request.Headers.Add("Authorization", "Bearer <token>");
request.Headers.Add("Authorization", "Bearer <token>");
var content = new StringContent("{\n \"name\": \"string\",\n \"embedding_config\": {\n \"type\": \"AZURE_EMBEDDING\",\n \"component\": {\n \"model_name\": \"text-embedding-ada-002\",\n \"embed_batch_size\": 10,\n \"num_workers\": 0,\n \"additional_kwargs\": {},\n \"api_key\": \"string\",\n \"api_base\": \"string\",\n \"api_version\": \"string\",\n \"max_retries\": 10,\n \"timeout\": 60,\n \"default_headers\": {},\n \"reuse_client\": true,\n \"dimensions\": 0,\n \"azure_endpoint\": \"string\",\n \"azure_deployment\": \"string\",\n \"class_name\": \"AzureOpenAIEmbedding\"\n }\n }\n}", null, "application/json");
request.Content = content;
var response = await client.SendAsync(request);
response.EnsureSuccessStatusCode();
Console.WriteLine(await response.Content.ReadAsStringAsync());
Request Collapse all
Base URL
https://api.cloud.llamaindex.ai
Auth
Parameters
— pathrequired
— cookie
Body required
{
  "name": "string",
  "embedding_config": {
    "type": "AZURE_EMBEDDING",
    "component": {
      "model_name": "text-embedding-ada-002",
      "embed_batch_size": 10,
      "num_workers": 0,
      "additional_kwargs": {},
      "api_key": "string",
      "api_base": "string",
      "api_version": "string",
      "max_retries": 10,
      "timeout": 60,
      "default_headers": {},
      "reuse_client": true,
      "dimensions": 0,
      "azure_endpoint": "string",
      "azure_deployment": "string",
      "class_name": "AzureOpenAIEmbedding"
    }
  }
}
ResponseClear

Click the Send API Request button above and see the response here!