Update Embedding Model Config
PUThttps://api.cloud.llamaindex.ai/api/v1/embedding-model-configs/:embedding_model_config_id
Update an embedding model config by ID.
Request
Path Parameters
Cookie Parameters
- application/json
Bodyrequired
- MOD1
- MOD2
- MOD1
- MOD2
- AZURE_EMBEDDING
- BEDROCK_EMBEDDING
- COHERE_EMBEDDING
- GEMINI_EMBEDDING
- HUGGINGFACE_API_EMBEDDING
- OPENAI_EMBEDDING
- VERTEXAI_EMBEDDING
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- Pooling
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD3
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
name object
The name of the embedding model config.
embedding_config object
The embedding configuration for the embedding model config.
Possible values: [AZURE_EMBEDDING
, BEDROCK_EMBEDDING
, COHERE_EMBEDDING
, GEMINI_EMBEDDING
, HUGGINGFACE_API_EMBEDDING
, OPENAI_EMBEDDING
, VERTEXAI_EMBEDDING
]
component object
Configuration for the Azure OpenAI embedding model.
The name of the OpenAI embedding model.
text-embedding-ada-002
The batch size for embedding calls.
Possible values: > 0
and <= 2048
10
num_workers object
The number of workers to use for async embedding calls.
Additional kwargs for the OpenAI API.
api_key object
The OpenAI API key.
The base URL for Azure deployment.
The version for Azure OpenAI API.
Maximum number of retries.
10
Timeout for each request.
60
default_headers object
The default headers for API requests.
Reuse the OpenAI client between requests. When doing anything with large volumes of async API calls, setting this to false can improve stability.
true
dimensions object
The number of dimensions on the output embedding vectors. Works only with v3 embedding models.
azure_endpoint object
The Azure endpoint to use.
azure_deployment object
The Azure deployment to use.
AzureOpenAIEmbedding
component object
Configuration for the Bedrock embedding model.
The modelId of the Bedrock model to use.
amazon.titan-embed-text-v1
The batch size for embedding calls.
Possible values: > 0
and <= 2048
10
num_workers object
The number of workers to use for async embedding calls.
profile_name object
The name of aws profile to use. If not given, then the default profile is used.
aws_access_key_id object
AWS Access Key ID to use
aws_secret_access_key object
AWS Secret Access Key to use
aws_session_token object
AWS Session Token to use
region_name object
AWS region name to use. Uses region configured in AWS CLI if not passed
The maximum number of API retries.
Possible values: > 0
10
The timeout for the Bedrock API request in seconds. It will be used for both connect and read timeouts.
60
Additional kwargs for the bedrock client.
BedrockEmbedding
component object
Configuration for the Cohere embedding model.
The modelId of the Cohere model to use.
embed-english-v3.0
The batch size for embedding calls.
Possible values: > 0
and <= 2048
10
num_workers object
The number of workers to use for async embedding calls.
api_key objectrequired
The Cohere API key.
Truncation type - START/ END/ NONE
END
input_type object
Model Input type. If not provided, search_document and search_query are used when needed.
Embedding type. If not provided float embedding_type is used when needed.
float
CohereEmbedding
component object
Configuration for the Gemini embedding model.
The modelId of the Gemini model to use.
models/embedding-001
The batch size for embedding calls.
Possible values: > 0
and <= 2048
10
num_workers object
The number of workers to use for async embedding calls.
title object
Title is only applicable for retrieval_document tasks, and is used to represent a document title. For other tasks, title is invalid.
task_type object
The task for embedding model.
api_key object
API key to access the model. Defaults to None.
api_base object
API base to access the model. Defaults to None.
transport object
Transport to access the model. Defaults to None.
GeminiEmbedding
component object
Configuration for the HuggingFace Inference API embedding model.
model_name object
Hugging Face model name. If None, the task will be used.
The batch size for embedding calls.
Possible values: > 0
and <= 2048
10
num_workers object
The number of workers to use for async embedding calls.
pooling object
Pooling strategy. If None, the model's default pooling is used.
Enum of possible pooling choices with pooling behaviors.
Possible values: [cls
, mean
, last
]
query_instruction object
Instruction to prepend during query embedding.
text_instruction object
Instruction to prepend during text embedding.
token object
Hugging Face token. Will default to the locally saved token. Pass token=False if you don’t want to send your token to the server.
timeout object
The maximum number of seconds to wait for a response from the server. Loading a new model in Inference API can take up to several minutes. Defaults to None, meaning it will loop until the server is available.
headers object
Additional headers to send to the server. By default only the authorization and user-agent headers are sent. Values in this dictionary will override the default values.
cookies object
Additional cookies to send to the server.
task object
Optional task to pick Hugging Face's recommended model, used when model_name is left as default of None.
HuggingFaceInferenceAPIEmbedding
component object
Configuration for the OpenAI embedding model.
The name of the OpenAI embedding model.
text-embedding-ada-002
The batch size for embedding calls.
Possible values: > 0
and <= 2048
10
num_workers object
The number of workers to use for async embedding calls.
Additional kwargs for the OpenAI API.
api_key object
The OpenAI API key.
api_base object
The base URL for OpenAI API.
api_version object
The version for OpenAI API.
Maximum number of retries.
10
Timeout for each request.
60
default_headers object
The default headers for API requests.
Reuse the OpenAI client between requests. When doing anything with large volumes of async API calls, setting this to false can improve stability.
true
dimensions object
The number of dimensions on the output embedding vectors. Works only with v3 embedding models.
OpenAIEmbedding
component object
Configuration for the VertexAI embedding model.
The modelId of the VertexAI model to use.
textembedding-gecko@003
The batch size for embedding calls.
Possible values: > 0
and <= 2048
10
num_workers object
The number of workers to use for async embedding calls.
The default location to use when making API calls.
The default GCP project to use when making Vertex API calls.
The embedding mode to use.
Possible values: [default
, classification
, clustering
, similarity
, retrieval
]
retrieval
Additional kwargs for the Vertex.
client_email objectrequired
The client email for the VertexAI credentials.
token_uri objectrequired
The token URI for the VertexAI credentials.
private_key_id objectrequired
The private key ID for the VertexAI credentials.
private_key objectrequired
The private key for the VertexAI credentials.
VertexTextEmbedding
Responses
- 200
- 422
Successful Response
- application/json
- Schema
- Example (auto)
Schema
- MOD1
- MOD2
- MOD1
- MOD2
- AZURE_EMBEDDING
- BEDROCK_EMBEDDING
- COHERE_EMBEDDING
- GEMINI_EMBEDDING
- HUGGINGFACE_API_EMBEDDING
- OPENAI_EMBEDDING
- VERTEXAI_EMBEDDING
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- Pooling
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD3
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
- MOD1
- MOD2
Unique identifier
created_at object
Creation datetime
updated_at object
Update datetime
The name of the embedding model config.
embedding_config objectrequired
The embedding configuration for the embedding model config.
The embedding configuration for the embedding model config.
Possible values: [AZURE_EMBEDDING
, BEDROCK_EMBEDDING
, COHERE_EMBEDDING
, GEMINI_EMBEDDING
, HUGGINGFACE_API_EMBEDDING
, OPENAI_EMBEDDING
, VERTEXAI_EMBEDDING
]
component object
Configuration for the Azure OpenAI embedding model.
The name of the OpenAI embedding model.
text-embedding-ada-002
The batch size for embedding calls.
Possible values: > 0
and <= 2048
10
num_workers object
The number of workers to use for async embedding calls.
Additional kwargs for the OpenAI API.
api_key object
The OpenAI API key.
The base URL for Azure deployment.
The version for Azure OpenAI API.
Maximum number of retries.
10
Timeout for each request.
60
default_headers object
The default headers for API requests.
Reuse the OpenAI client between requests. When doing anything with large volumes of async API calls, setting this to false can improve stability.
true
dimensions object
The number of dimensions on the output embedding vectors. Works only with v3 embedding models.
azure_endpoint object
The Azure endpoint to use.
azure_deployment object
The Azure deployment to use.
AzureOpenAIEmbedding
component object
Configuration for the Bedrock embedding model.
The modelId of the Bedrock model to use.
amazon.titan-embed-text-v1
The batch size for embedding calls.
Possible values: > 0
and <= 2048
10
num_workers object
The number of workers to use for async embedding calls.
profile_name object
The name of aws profile to use. If not given, then the default profile is used.
aws_access_key_id object
AWS Access Key ID to use
aws_secret_access_key object
AWS Secret Access Key to use
aws_session_token object
AWS Session Token to use
region_name object
AWS region name to use. Uses region configured in AWS CLI if not passed
The maximum number of API retries.
Possible values: > 0
10
The timeout for the Bedrock API request in seconds. It will be used for both connect and read timeouts.
60
Additional kwargs for the bedrock client.
BedrockEmbedding
component object
Configuration for the Cohere embedding model.
The modelId of the Cohere model to use.
embed-english-v3.0
The batch size for embedding calls.
Possible values: > 0
and <= 2048
10
num_workers object
The number of workers to use for async embedding calls.
api_key objectrequired
The Cohere API key.
Truncation type - START/ END/ NONE
END
input_type object
Model Input type. If not provided, search_document and search_query are used when needed.
Embedding type. If not provided float embedding_type is used when needed.
float
CohereEmbedding
component object
Configuration for the Gemini embedding model.
The modelId of the Gemini model to use.
models/embedding-001
The batch size for embedding calls.
Possible values: > 0
and <= 2048
10
num_workers object
The number of workers to use for async embedding calls.
title object
Title is only applicable for retrieval_document tasks, and is used to represent a document title. For other tasks, title is invalid.
task_type object
The task for embedding model.
api_key object
API key to access the model. Defaults to None.
api_base object
API base to access the model. Defaults to None.
transport object
Transport to access the model. Defaults to None.
GeminiEmbedding
component object
Configuration for the HuggingFace Inference API embedding model.
model_name object
Hugging Face model name. If None, the task will be used.
The batch size for embedding calls.
Possible values: > 0
and <= 2048
10
num_workers object
The number of workers to use for async embedding calls.
pooling object
Pooling strategy. If None, the model's default pooling is used.
Enum of possible pooling choices with pooling behaviors.
Possible values: [cls
, mean
, last
]
query_instruction object
Instruction to prepend during query embedding.
text_instruction object
Instruction to prepend during text embedding.
token object
Hugging Face token. Will default to the locally saved token. Pass token=False if you don’t want to send your token to the server.
timeout object
The maximum number of seconds to wait for a response from the server. Loading a new model in Inference API can take up to several minutes. Defaults to None, meaning it will loop until the server is available.
headers object
Additional headers to send to the server. By default only the authorization and user-agent headers are sent. Values in this dictionary will override the default values.
cookies object
Additional cookies to send to the server.
task object
Optional task to pick Hugging Face's recommended model, used when model_name is left as default of None.
HuggingFaceInferenceAPIEmbedding
component object
Configuration for the OpenAI embedding model.
The name of the OpenAI embedding model.
text-embedding-ada-002
The batch size for embedding calls.
Possible values: > 0
and <= 2048
10
num_workers object
The number of workers to use for async embedding calls.
Additional kwargs for the OpenAI API.
api_key object
The OpenAI API key.
api_base object
The base URL for OpenAI API.
api_version object
The version for OpenAI API.
Maximum number of retries.
10
Timeout for each request.
60
default_headers object
The default headers for API requests.
Reuse the OpenAI client between requests. When doing anything with large volumes of async API calls, setting this to false can improve stability.
true
dimensions object
The number of dimensions on the output embedding vectors. Works only with v3 embedding models.
OpenAIEmbedding
component object
Configuration for the VertexAI embedding model.
The modelId of the VertexAI model to use.
textembedding-gecko@003
The batch size for embedding calls.
Possible values: > 0
and <= 2048
10
num_workers object
The number of workers to use for async embedding calls.
The default location to use when making API calls.
The default GCP project to use when making Vertex API calls.
The embedding mode to use.
Possible values: [default
, classification
, clustering
, similarity
, retrieval
]
retrieval
Additional kwargs for the Vertex.
client_email objectrequired
The client email for the VertexAI credentials.
token_uri objectrequired
The token URI for the VertexAI credentials.
private_key_id objectrequired
The private key ID for the VertexAI credentials.
private_key objectrequired
The private key for the VertexAI credentials.
VertexTextEmbedding
{
"id": "3fa85f64-5717-4562-b3fc-2c963f66afa6",
"created_at": "2024-07-29T15:51:28.071Z",
"updated_at": "2024-07-29T15:51:28.071Z",
"name": "string",
"embedding_config": {
"type": "AZURE_EMBEDDING",
"component": {
"model_name": "text-embedding-ada-002",
"embed_batch_size": 10,
"num_workers": 0,
"additional_kwargs": {},
"api_key": "string",
"api_base": "string",
"api_version": "string",
"max_retries": 10,
"timeout": 60,
"default_headers": {},
"reuse_client": true,
"dimensions": 0,
"azure_endpoint": "string",
"azure_deployment": "string",
"class_name": "AzureOpenAIEmbedding"
}
},
"project_id": "3fa85f64-5717-4562-b3fc-2c963f66afa6"
}
Validation Error
- application/json
- Schema
- Example (auto)
Schema
- Array [
- Array [anyOf
- MOD1
- MOD2
- ]
- ]
detail object[]
loc object[]required
{
"detail": [
{
"loc": [
"string",
0
],
"msg": "string",
"type": "string"
}
]
}
- csharp
- curl
- dart
- go
- http
- java
- javascript
- kotlin
- c
- nodejs
- objective-c
- ocaml
- php
- powershell
- python
- r
- ruby
- rust
- shell
- swift
- HTTPCLIENT
- RESTSHARP
var client = new HttpClient();
var request = new HttpRequestMessage(HttpMethod.Put, "https://api.cloud.llamaindex.ai/api/v1/embedding-model-configs/:embedding_model_config_id");
request.Headers.Add("Accept", "application/json");
request.Headers.Add("Authorization", "Bearer <token>");
request.Headers.Add("Authorization", "Bearer <token>");
var content = new StringContent("{\n \"name\": \"string\",\n \"embedding_config\": {\n \"type\": \"AZURE_EMBEDDING\",\n \"component\": {\n \"model_name\": \"text-embedding-ada-002\",\n \"embed_batch_size\": 10,\n \"num_workers\": 0,\n \"additional_kwargs\": {},\n \"api_key\": \"string\",\n \"api_base\": \"string\",\n \"api_version\": \"string\",\n \"max_retries\": 10,\n \"timeout\": 60,\n \"default_headers\": {},\n \"reuse_client\": true,\n \"dimensions\": 0,\n \"azure_endpoint\": \"string\",\n \"azure_deployment\": \"string\",\n \"class_name\": \"AzureOpenAIEmbedding\"\n }\n }\n}", null, "application/json");
request.Content = content;
var response = await client.SendAsync(request);
response.EnsureSuccessStatusCode();
Console.WriteLine(await response.Content.ReadAsStringAsync());
Click the Send API Request
button above and see the response here!