List Embedding Model Configs
GET/api/v1/embedding-model-configs
List Embedding Model Configs
Request
Query Parameters
Cookie Parameters
Responses
- 200
- 422
Successful Response
- application/json
- Schema
- Example (from schema)
Schema
Array [
- MOD1
- MOD1
- AzureOpenAIEmbeddingConfig
- CohereEmbeddingConfig
- GeminiEmbeddingConfig
- HuggingFaceInferenceAPIEmbeddingConfig
- OpenAIEmbeddingConfig
- VertexAIEmbeddingConfig
- BedrockEmbeddingConfig
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- Pooling
- MOD1
- MOD1
- MOD1
- MOD2
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
]
Unique identifier
created_at
object
Creation datetime
anyOf
string
updated_at
object
Update datetime
anyOf
string
The name of the embedding model config.
embedding_config
object
required
The embedding configuration for the embedding model config.
oneOf
Type of the embedding model.
Possible values: [AZURE_EMBEDDING
]
AZURE_EMBEDDING
component
object
Configuration for the Azure OpenAI embedding model.
The name of the OpenAI embedding model.
text-embedding-ada-002
The batch size for embedding calls.
Possible values: > 0
and <= 2048
10
num_workers
object
The number of workers to use for async embedding calls.
anyOf
integer
Additional kwargs for the OpenAI API.
api_key
object
The OpenAI API key.
anyOf
string
The base URL for Azure deployment.
The version for Azure OpenAI API.
Maximum number of retries.
10
Timeout for each request.
60
default_headers
object
The default headers for API requests.
anyOf
Reuse the OpenAI client between requests. When doing anything with large volumes of async API calls, setting this to false can improve stability.
true
dimensions
object
The number of dimensions on the output embedding vectors. Works only with v3 embedding models.
anyOf
integer
azure_endpoint
object
The Azure endpoint to use.
anyOf
string
azure_deployment
object
The Azure deployment to use.
anyOf
string
AzureOpenAIEmbedding
Type of the embedding model.
Possible values: [COHERE_EMBEDDING
]
COHERE_EMBEDDING
component
object
Configuration for the Cohere embedding model.
The modelId of the Cohere model to use.
embed-english-v3.0
The batch size for embedding calls.
Possible values: > 0
and <= 2048
10
num_workers
object
The number of workers to use for async embedding calls.
anyOf
integer
api_key
object
required
The Cohere API key.
anyOf
string
Truncation type - START/ END/ NONE
END
input_type
object
Model Input type. If not provided, search_document and search_query are used when needed.
anyOf
string
Embedding type. If not provided float embedding_type is used when needed.
float
CohereEmbedding
Type of the embedding model.
Possible values: [GEMINI_EMBEDDING
]
GEMINI_EMBEDDING
component
object
Configuration for the Gemini embedding model.
The modelId of the Gemini model to use.
models/embedding-001
The batch size for embedding calls.
Possible values: > 0
and <= 2048
10
num_workers
object
The number of workers to use for async embedding calls.
anyOf
integer
title
object
Title is only applicable for retrieval_document tasks, and is used to represent a document title. For other tasks, title is invalid.
anyOf
string
task_type
object
The task for embedding model.
anyOf
string
api_key
object
API key to access the model. Defaults to None.
anyOf
string
api_base
object
API base to access the model. Defaults to None.
anyOf
string
transport
object
Transport to access the model. Defaults to None.
anyOf
string
GeminiEmbedding
Type of the embedding model.
Possible values: [HUGGINGFACE_API_EMBEDDING
]
HUGGINGFACE_API_EMBEDDING
component
object
Configuration for the HuggingFace Inference API embedding model.
model_name
object
Hugging Face model name. If None, the task will be used.
anyOf
string
The batch size for embedding calls.
Possible values: > 0
and <= 2048
10
num_workers
object
The number of workers to use for async embedding calls.
anyOf
integer
pooling
object
Pooling strategy. If None, the model's default pooling is used.
anyOf
Enum of possible pooling choices with pooling behaviors.
string
Possible values: [cls
, mean
, last
]
query_instruction
object
Instruction to prepend during query embedding.
anyOf
string
text_instruction
object
Instruction to prepend during text embedding.
anyOf
string
token
object
Hugging Face token. Will default to the locally saved token. Pass token=False if you don’t want to send your token to the server.
anyOf
string
boolean
timeout
object
The maximum number of seconds to wait for a response from the server. Loading a new model in Inference API can take up to several minutes. Defaults to None, meaning it will loop until the server is available.
anyOf
number
headers
object
Additional headers to send to the server. By default only the authorization and user-agent headers are sent. Values in this dictionary will override the default values.
anyOf
cookies
object
Additional cookies to send to the server.
anyOf
task
object
Optional task to pick Hugging Face's recommended model, used when model_name is left as default of None.
anyOf
string
HuggingFaceInferenceAPIEmbedding
Type of the embedding model.
Possible values: [OPENAI_EMBEDDING
]
OPENAI_EMBEDDING
component
object
Configuration for the OpenAI embedding model.
The name of the OpenAI embedding model.
text-embedding-ada-002
The batch size for embedding calls.
Possible values: > 0
and <= 2048
10
num_workers
object
The number of workers to use for async embedding calls.
anyOf
integer
Additional kwargs for the OpenAI API.
api_key
object
The OpenAI API key.
anyOf
string
api_base
object
The base URL for OpenAI API.
anyOf
string
api_version
object
The version for OpenAI API.
anyOf
string
Maximum number of retries.
10
Timeout for each request.
60
default_headers
object
The default headers for API requests.
anyOf
Reuse the OpenAI client between requests. When doing anything with large volumes of async API calls, setting this to false can improve stability.
true
dimensions
object
The number of dimensions on the output embedding vectors. Works only with v3 embedding models.
anyOf
integer
OpenAIEmbedding
Type of the embedding model.
Possible values: [VERTEXAI_EMBEDDING
]
VERTEXAI_EMBEDDING
component
object
Configuration for the VertexAI embedding model.
The modelId of the VertexAI model to use.
textembedding-gecko@003
The batch size for embedding calls.
Possible values: > 0
and <= 2048
10
num_workers
object
The number of workers to use for async embedding calls.
anyOf
integer
The default location to use when making API calls.
The default GCP project to use when making Vertex API calls.
The embedding mode to use.
Possible values: [default
, classification
, clustering
, similarity
, retrieval
]
retrieval
Additional kwargs for the Vertex.
client_email
object
required
The client email for the VertexAI credentials.
anyOf
string
token_uri
object
required
The token URI for the VertexAI credentials.
anyOf
string
private_key_id
object
required
The private key ID for the VertexAI credentials.
anyOf
string
private_key
object
required
The private key for the VertexAI credentials.
anyOf
string
VertexTextEmbedding
Type of the embedding model.
Possible values: [BEDROCK_EMBEDDING
]
BEDROCK_EMBEDDING
component
object
Configuration for the Bedrock embedding model.
The modelId of the Bedrock model to use.
amazon.titan-embed-text-v1
The batch size for embedding calls.
Possible values: > 0
and <= 2048
10
num_workers
object
The number of workers to use for async embedding calls.
anyOf
integer
profile_name
object
The name of aws profile to use. If not given, then the default profile is used.
anyOf
string
aws_access_key_id
object
AWS Access Key ID to use
anyOf
string
aws_secret_access_key
object
AWS Secret Access Key to use
anyOf
string
aws_session_token
object
AWS Session Token to use
anyOf
string
region_name
object
AWS region name to use. Uses region configured in AWS CLI if not passed
anyOf
string
The maximum number of API retries.
Possible values: > 0
10
The timeout for the Bedrock API request in seconds. It will be used for both connect and read timeouts.
60
Additional kwargs for the bedrock client.
BedrockEmbedding
[
{
"id": "3fa85f64-5717-4562-b3fc-2c963f66afa6",
"created_at": "2024-07-29T15:51:28.071Z",
"updated_at": "2024-07-29T15:51:28.071Z",
"name": "string",
"embedding_config": {},
"project_id": "3fa85f64-5717-4562-b3fc-2c963f66afa6"
}
]
Validation Error
- application/json
- Schema
- Example (from schema)
Schema
Array [
Array [
- MOD1
- MOD2
]
]
detail
object[]
loc
object[]
required
anyOf
string
integer
{
"detail": [
{
"loc": [
"string",
0
],
"msg": "string",
"type": "string"
}
]
}