Upsert Data Sink
PUT/api/v1/data-sinks
Upserts a data sink. Updates if a data sink with the same name and project_id already exists. Otherwise, creates a new data sink.
Request
Query Parameters
Cookie Parameters
- application/json
Body
required
- MOD1
- CloudPineconeVectorStore
- CloudPostgresVectorStore
- CloudQdrantVectorStore
- CloudAzureAISearchVectorStore
- CloudMongoDBAtlasVectorSearch
- CloudMilvusVectorStore
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
The name of the data sink.
Possible values: [PINECONE
, POSTGRES
, QDRANT
, AZUREAI_SEARCH
, MONGODB_ATLAS
, MILVUS
]
component
object
required
anyOf
object
Cloud Pinecone Vector Store.
This class is used to store the configuration for a Pinecone vector store, so that it can be created and used in LlamaCloud.
Args: api_key (str): API key for authenticating with Pinecone index_name (str): name of the Pinecone index namespace (optional[str]): namespace to use in the Pinecone index insert_kwargs (optional[dict]): additional kwargs to pass during insertion
Possible values: [true
]
true
The API key for authenticating with Pinecone
namespace
object
anyOf
string
insert_kwargs
object
anyOf
object
CloudPineconeVectorStore
Possible values: [false
]
false
hybrid_search
object
anyOf
boolean
CloudPostgresVectorStore
Cloud Qdrant Vector Store.
This class is used to store the configuration for a Qdrant vector store, so that it can be created and used in LlamaCloud.
Args: collection_name (str): name of the Qdrant collection url (str): url of the Qdrant instance api_key (str): API key for authenticating with Qdrant max_retries (int): maximum number of retries in case of a failure. Defaults to 3 client_kwargs (dict): additional kwargs to pass to the Qdrant client
Possible values: [true
]
true
3
CloudQdrantVectorStore
Cloud Azure AI Search Vector Store.
Possible values: [true
]
true
search_service_api_version
object
anyOf
string
index_name
object
anyOf
string
filterable_metadata_field_keys
object
anyOf
object
embedding_dimension
object
anyOf
integer
client_id
object
anyOf
string
client_secret
object
anyOf
string
tenant_id
object
anyOf
string
CloudAzureAISearchVectorStore
Cloud MongoDB Atlas Vector Store.
This class is used to store the configuration for a MongoDB Atlas vector store, so that it can be created and used in LlamaCloud.
Args: mongodb_uri (str): URI for connecting to MongoDB Atlas db_name (str): name of the MongoDB database collection_name (str): name of the MongoDB collection vector_index_name (str): name of the MongoDB Atlas vector index fulltext_index_name (str): name of the MongoDB Atlas full-text index
Possible values: [false
]
false
vector_index_name
object
anyOf
string
fulltext_index_name
object
anyOf
string
CloudMongoDBAtlasVectorSearch
Cloud Milvus Vector Store.
Possible values: [false
]
false
collection_name
object
anyOf
string
token
object
anyOf
string
embedding_dimension
object
anyOf
integer
CloudMilvusVectorStore