List Data Sinks
GET/api/v1/data-sinks
List data sinks for a given project.
Request
Query Parameters
Cookie Parameters
Responses
- 200
- 422
Successful Response
- application/json
- Schema
- Example (from schema)
Schema
Array [
- MOD1
- MOD1
- MOD1
- CloudPineconeVectorStore
- CloudPostgresVectorStore
- CloudQdrantVectorStore
- CloudAzureAISearchVectorStore
- CloudMongoDBAtlasVectorSearch
- CloudMilvusVectorStore
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
- MOD1
]
Unique identifier
created_at
object
Creation datetime
anyOf
string
updated_at
object
Update datetime
anyOf
string
The name of the data sink.
Possible values: [PINECONE
, POSTGRES
, QDRANT
, AZUREAI_SEARCH
, MONGODB_ATLAS
, MILVUS
]
component
object
required
anyOf
object
Cloud Pinecone Vector Store.
This class is used to store the configuration for a Pinecone vector store, so that it can be created and used in LlamaCloud.
Args: api_key (str): API key for authenticating with Pinecone index_name (str): name of the Pinecone index namespace (optional[str]): namespace to use in the Pinecone index insert_kwargs (optional[dict]): additional kwargs to pass during insertion
Possible values: [true
]
true
namespace
object
anyOf
string
insert_kwargs
object
anyOf
object
CloudPineconeVectorStore
Possible values: [false
]
false
hybrid_search
object
anyOf
boolean
CloudPostgresVectorStore
Cloud Qdrant Vector Store.
This class is used to store the configuration for a Qdrant vector store, so that it can be created and used in LlamaCloud.
Args: collection_name (str): name of the Qdrant collection url (str): url of the Qdrant instance api_key (str): API key for authenticating with Qdrant max_retries (int): maximum number of retries in case of a failure. Defaults to 3 client_kwargs (dict): additional kwargs to pass to the Qdrant client
Possible values: [true
]
true
3
CloudQdrantVectorStore
Cloud Azure AI Search Vector Store.
Possible values: [true
]
true
search_service_api_version
object
anyOf
string
index_name
object
anyOf
string
filterable_metadata_field_keys
object
anyOf
object
embedding_dimension
object
anyOf
integer
client_id
object
anyOf
string
client_secret
object
anyOf
tenant_id
object
anyOf
string
CloudAzureAISearchVectorStore
Cloud MongoDB Atlas Vector Store.
This class is used to store the configuration for a MongoDB Atlas vector store, so that it can be created and used in LlamaCloud.
Args: mongodb_uri (str): URI for connecting to MongoDB Atlas db_name (str): name of the MongoDB database collection_name (str): name of the MongoDB collection vector_index_name (str): name of the MongoDB Atlas vector index fulltext_index_name (str): name of the MongoDB Atlas full-text index
Possible values: [false
]
false
vector_index_name
object
anyOf
string
fulltext_index_name
object
anyOf
string
CloudMongoDBAtlasVectorSearch
Cloud Milvus Vector Store.
Possible values: [false
]
false
collection_name
object
anyOf
string
token
object
anyOf
embedding_dimension
object
anyOf
integer
CloudMilvusVectorStore
[
{
"id": "3fa85f64-5717-4562-b3fc-2c963f66afa6",
"created_at": "2024-07-29T15:51:28.071Z",
"updated_at": "2024-07-29T15:51:28.071Z",
"name": "string",
"sink_type": "PINECONE",
"component": {},
"project_id": "3fa85f64-5717-4562-b3fc-2c963f66afa6"
}
]
Validation Error
- application/json
- Schema
- Example (from schema)
Schema
Array [
Array [
- MOD1
- MOD2
]
]
detail
object[]
loc
object[]
required
anyOf
string
integer
{
"detail": [
{
"loc": [
"string",
0
],
"msg": "string",
"type": "string"
}
]
}