Skip to main content

Chat

POST 

/api/v1/pipelines/:pipeline_id/chat

Make a retrieval query + chat completion for a managed pipeline.

Request

Path Parameters

    pipeline_id uuidrequired

Cookie Parameters

    session any

Body

required

    messages

    object[]

  • Array [

  • id Id (string)required

    ID of the message, if any. a UUID.

    role MessageRole (string)required

    Message role.

    Possible values: [system, user, assistant, function, tool, chatbot, model]

    content Content (string)required

    data

    object

    Additional data to be stored with the message.

    anyOf

    object

    class_name Class Name (string)
    Default value: base_component
  • ]

  • data

    object

    retrieval_parameters

    object

    Schema for the search params for an retrieval execution that can be preset for a pipeline.

    dense_similarity_top_k

    object

    Number of nodes for dense retrieval.

    anyOf

    integer

    Possible values: >= 1 and <= 100

    dense_similarity_cutoff

    object

    Minimum similarity score wrt query for retrieval

    anyOf

    number

    Possible values: <= 1

    sparse_similarity_top_k

    object

    Number of nodes for sparse retrieval.

    anyOf

    integer

    Possible values: >= 1 and <= 100

    enable_reranking

    object

    Enable reranking for retrieval

    anyOf

    boolean

    rerank_top_n

    object

    Number of reranked nodes for returning.

    anyOf

    integer

    Possible values: >= 1 and <= 100

    alpha

    object

    Alpha value for hybrid retrieval to determine the weights between dense and sparse retrieval. 0 is sparse retrieval and 1 is dense retrieval.

    anyOf

    number

    Possible values: <= 1

    search_filters

    object

    Search filters for retrieval.

    anyOf

    Metadata filters for vector stores.

    filters

    object[]

    required

  • Array [

  • anyOf

    Comprehensive metadata filter for vector stores to support more operators.

    Value uses Strict* types, as int, float and str are compatible types and were all converted to string before.

    See: https://docs.pydantic.dev/latest/usage/types/#strict-types

    key Key (string)required

    value

    object

    required

    anyOf

    integer

    operator FilterOperator (string)

    Vector store filter operator.

    Possible values: [==, >, <, !=, >=, <=, in, nin, any, all, text_match, contains, is_empty]

    Default value: ==
  • ]

  • condition

    object

    anyOf

    Vector store filter conditions to combine different filters.

    string

    Possible values: [and, or]

    files_top_k

    object

    Number of files to retrieve (only for retrieval mode files_via_metadata and files_via_content).

    anyOf

    integer

    Possible values: >= 1 and <= 5

    retrieval_mode RetrievalMode (string)

    The retrieval mode for the query.

    Possible values: [chunks, files_via_metadata, files_via_content, auto_routed]

    Default value: auto_routed
    retrieve_image_nodes Retrieve Image Nodes (boolean)

    Whether to retrieve image nodes.

    Default value: false
    class_name Class Name (string)
    Default value: base_component

    llm_parameters

    object

    anyOf

    model_name SupportedLLMModelNames (string)

    The name of the model to use for LLM completions.

    Possible values: [GPT_3_5_TURBO, GPT_4, GPT_4_TURBO, GPT_4O, GPT_4O_MINI, AZURE_OPENAI]

    Default value: GPT_3_5_TURBO

    system_prompt

    object

    The system prompt to use for the completion.

    anyOf

    string

    temperature

    object

    The temperature value for the model.

    anyOf

    number

    class_name Class Name (string)
    Default value: base_component
    class_name Class Name (string)
    Default value: base_component
    class_name Class Name (string)
    Default value: base_component

Responses

Successful Response

Schema

    any

Loading...